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1. Introduction

In this work we pursue the investigation, started in [5], of certain parametric integral 
transforms from the point of view of tame analysis (in [5] we studied the parametric 
Fourier transform, here we consider the parametric Mellin transform, and in a forthcom-
ing paper we analyze the combined action of these two operators on certain collections 
of tame functions).

The study of parametric integrals of functions belonging to a given tame class arises 
from the question of the nature of the volume of the fibres Xy of a tame family (Xy)y∈Y . 
More precisely, describing the locus of integrability is a counterpart to establishing the 
nature of the set of points y of Y for which Xy has finite volume. The volumes of 
globally subanalytic sets have been studied in [21,8], where it is proven that, for a 
globally subanalytic set X ⊆ Rn+m such that the fibres Xy = X ∩ {{y} ×Rm} have 
dimension at most k, the set Y0 ⊆ Rn of points y such that the k-dimensional volume 
v (y) of Xy is finite is again globally subanalytic. However, it is necessary to introduce a 
function which is not globally subanalytic in order to express the volume: the restriction 
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of v to Y0 has the form v = P (A1, . . . , Ar, logA1, . . . , logAr), where P is a polynomial 
and the Ai are positive globally subanalytic functions.

The class of all functions definable in an o-minimal structure is closed under many nat-
ural operations, but is not in general stable under parametric integration. For instance, 
it follows from the above results that the family S of all globally subanalytic functions
is not stable under parametric integration. However, the family C of constructible func-
tions (see Definition 2.1) is, and indeed it is the smallest such collection containing S
(see [10]). Moreover, the locus of integrability of a constructible function is the zero-set 
of a function which is again constructible. The expansion Ran,exp of the real field by all 
restricted analytic functions and the unrestricted exponential is an o-minimal structure 
in which all the functions in C are definable, which is not stable under parametric inte-

gration, as shown in [13, theorem 5.11]. For instance the error function x �→
xˆ

0

e−t2 dt is 

the parametric integral of a very simple function definable in Ran,exp, but it is not itself 
definable in Ran,exp.

Nevertheless, some of these integrals are definable in larger o-minimal structures. 
For example, all antiderivatives of functions definable in an o-minimal structure R are 
definable in a larger o-minimal structure, called the Pfaffian closure of R [28]. Other 
parametric integrals and integral transforms of functions definable in Ran,exp (for ex-
ample, the restrictions to the real half-line (1,+∞) of the Gamma function, seen as a 
Mellin transform, and of the Riemann Zeta function, seen as a quotient of two Mellin 
transforms) are known to be definable in suitable larger o-minimal structures [15,14,25]. 
However, there is no known general o-minimal universe in which all such parametric 
integrals are definable (and indeed incompatibility results in [26,24,19] suggest that such 
a universe might not exist).

We therefore turn our attention to subcollections of functions definable in a given 
o-minimal structure (here, Ran,exp) which are stable under taking parametric integrals, 
as is the family C. There aren’t many known such collections. For example, the collection 
of all functions definable in Rpow

an (the polynomially bounded expansion of Ran by all real 
power functions, seen as a reduct of Ran,exp) is not stable under parametric integration 
and indeed some such integrals are not even definable in Ran,exp (see [27, Prop. 2.1 
and Theorem 2.2] and Subsection 2.1 where this example is discussed in detail). Our 
first aim is to define a collection CR of R-algebras of functions definable in the o-minimal 
structure Ran,exp, extending the stable collection C, and, in turn, stable under parametric 
integration (see Definition 2.2 and Theorem 2.4 below, for the case K = R). The elements 
of CR are called real power-constructible functions and they are constructed from real 
powers and logarithms of globally subanalytic functions.

Parametric integrals of tame functions also appear in the study of functional and 
geometric analogues of period conjectures. Recent breakthroughs in functional transcen-
dence around o-minimality and periods have been made, concerning the transcendence 
of the coordinates of the Hodge filtration, which are ratios of certain period functions. 
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For instance, Bakker, Klingler and Tsimerman [4] proved that period maps are definable 
in the o-minimal structure Ran,exp, yielding a new proof of the algebraicity of the Hodge 
loci. This provides an example of an integration process whose resulting functions remain 
in the original tame framework. Analogously, our Theorem 2.4 states that parametric 
integration preserves the class CR. In the same spirit, we consider (see Definition 2.13
and Theorems 2.16, 2.19) larger classes which we prove to be stable under parametric 
integration.

Another motivation for considering the collection CR lies beyond o-minimality: most 
integral transforms (Fourier, Mellin...) are usually applied to rapidly decaying or com-
pactly supported unary functions, but they can be extended to classes of functions having 
an asymptotic expansion (at 0 and/or at ∞) in the scale of real power-log monomials 
(for example, for such functions it can be shown that the Mellin transform extends to a 
meromorphic function on the whole complex plane, outside the domain of convergence 
of the integral, see [30, Section 6.7 (by D. Zagier)]. In order to consider parametric ver-
sions of such transforms, one needs some control over the behaviour of the multi-variable 
functions in the collection to which we want to apply the transform. This is clear for 
example in the study of oscillatory integrals of the first kind, when the phase and the 
amplitude are analytic: resolution of singularities in the class of analytic germs is used to 
recover information about the asymptotic expansion of such parametric integrals. This 
is the strategy developed, for example in [2], [22] and [29], in which the powers appearing 
in the asymptotic expansion of certain integral transforms with an analytic phase f (and 
a compactly supported amplitude) are expressed, using resolution of singularities of f , 
in terms of numerical invariants of the singularity of f at the origin. When applying 
parametric integral transforms to a class F of functions in several variables, it is hence 
important to have information about the geometry of the domain of the functions in 
F and to have some well-behaved theory of resolution of singularities adapted to the 
class F . This is where o-minimality plays a central role: the key result here is a version 
of local resolution of singularities called the subanalytic preparation theorem [20], [23], 
together with cell-decomposition and piecewise analyticity arguments to patch together 
the local results into a global stability statement. This viewpoint is implemented in [1], 
[6], and in the article in preparation [7], in which we systematically study the rate of 
decay of Fourier transforms of subanalytic functions, as well as of functions of CR. More 
specifically, we investigate the interplay between rapid decay and holomorphic extension 
to certain complex domains around the real axis.

Understanding the stability of wide collections of natural functions under oscillatory 
integral transforms appears as a key motivation for the theory of distributions. The 
reader may find in [1] an illustration of the importance of controlling asymptotics in the 
study of certain classes of distributions.

In this paper we study parametric Mellin transforms of functions in CR, exploiting 
both the o-minimal (subanalytic) nature of the domain of the functions and a prepara-
tion theorem available for the functions in CR. We define a collection of functions which 
contains the parametric Mellin transforms of the functions in CR (X), for X ⊆ Rm a glob-
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ally subanalytic set, and stable under integration with respect to the variable x ∈ X: 
our starting point is CR, a collection of functions defined on subanalytic sets. We then 
apply an integral transform which depends on a complex parameter s, which we want 
to keep separate from the subanalytic variables, in the sense that we will not integrate 
with respect to s. For this, we construct a collection CM of C-algebras of functions 
of the variables (s, x) (where s is a single complex variable and x is a tuple of vari-
ables ranging in a subanalytic set) which contain the parametric Mellin transforms of 
power-constructible functions, and stable under parametric integration. In [5], where we 
considered the parametric Fourier transforms of constructible functions, the correspond-
ing system of C-algebras is described in terms of transcendental elements, which are 
themselves integral operators evaluated at constructible functions. Here instead we give 
an explicit description of parametric Mellin transforms in terms of series of functions of 
a simple special form.

The functions in CM will be shown to depend meromorphically on the variable s. 
This, together with Theorem 2.16, will be used to provide a meromorphic extension of 
the parametric Mellin transform to the whole complex plane. A classical result in this 
spirit is proven in [3] (see also [16, Th. 1.4] for a more recent and simplified proof): given 
a real analytic function f defined in a open neighbourhood U of 0 ∈ Rn, for every C∞

function ϕ whose support is compact and contained in U , the integral of fsϕ, initially 
defined as a holomorphic function on � (s) > 0, extends to a meromorphic function on 
C.

As the Mellin transform is usually considered as a function of a complex parameter, 
we leave the realm of real-valued functions and of o-minimality. There is hence no reason 
to restrict ourselves to real powers of subanalytic functions. Therefore, we define complex 
power-constructible functions, prove that they form a collection CC which is stable under 
parametric integration (see Definition 2.2 and Theorem 2.4 below, case K = C) and 
study their parametric Mellin transforms. The purely imaginary powers of subanalytic 
functions introduce now some nontrivial oscillatory phenomena, which lead us to invoke 
results from the theory of continuously distributed functions mod 1 (see Section 3.1). 
Despite the presence of oscillatory functions, which forces us to leave the realm of o-
minimality, Theorem 2.16 and its consequences show that the class CM is geometrically 
tame, in a broader sense.

The paper is organized as follows. In Section 2, we introduce several classes of func-
tions, for which we prove stability under parametric integration: power-constructible 
functions (Definition 2.2), parametric power-constructible functions (Definition 2.13) 
and some variants (Section 2.3.1). The main results about these classes are stated in 
Theorems 2.4, 2.16 and 2.19. In Section 3 we introduce the three basic tools that will 
be used in the proofs of the main results: a non-compensation argument about finite 
sums of purely imaginary powers, the properties of parametric strong functions (which 
are the building blocks in the construction of the class of parametric power-constructible 
functions) and the previously mentioned subanalytic preparation theorem, from which 
we derive the consequences needed in our setting. Section 4 is devoted to preparing the 
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functions in the classes under consideration in a particularly simple way with respect to 
a given subanalytic variable. This will allow in Section 5 to provide a first result about 
integrating a generator of a class with respect to a single variable. The proofs of the 
general stability statements are carried out in Section 6.

2. Notation, definitions and main results

A subset X of Rm is globally subanalytic if it is the image under the canonical 
projection from Rm+n to Rm of a globally semianalytic subset of Rm+n (i.e. a subset 
Y ⊆ Rm+n such that, in a neighbourhood of every point of P 1 (R)m+n, Y is described 
by finitely many analytic equations and inequalities). Equivalently, X is definable in the 
o-minimal structure Ran (see for example [11]). Thus, the logarithm log : (0,+∞) −→ R

and the power map xy : (0,+∞)×R −→ R are functions whose graph is not subanalytic, 
but they are definable in the o-minimal structure Ran,exp (see for example [12]).

Throughout this paper X ⊆ Rm will be a globally subanalytic set (from now on, just 
“subanalytic set”, for short). Denote by S (X) the collection of all subanalytic functions 
on X, i.e. all the functions of domain X whose graph is a subanalytic set, and let 
S+ (X) = {f ∈ S (X) : f (X) ⊆ (0,+∞)}.

Definition 2.1 (Constructible functions). Let C (X) be the R-algebra of constructible func-
tions on X, generated by all subanalytic functions and their logarithms:

C (X) =

⎧⎨
⎩

N∑
i=1

fi

M∏
j=1

log gi,j : M,N ∈ N×, fi ∈ S (X) , gi,j ∈ S+ (X)

⎫⎬
⎭ .

Define C = {C (X) : X ⊆ Rm subanalytic, m ∈ N}.

By [20,8,9], C is the smallest collection of R-algebras containing S and stable under 
parametric integration. Notice that constructible functions are definable in Ran, exp.

A function defined on X and taking its values in C is called a complex-valued sub-
analytic (constructible, resp.) function if its real and imaginary parts are in S (X) (in 
C (X), resp.).

2.1. Power-constructible functions

For K ⊆ C a subfield, write

SK
+ (X) = {fα : f ∈ S+ (X) , α ∈ K} .

Let FK be R if K ⊆ R and C otherwise.

Definition 2.2 (Power-constructible functions). Let CK (X) be the FK-algebra generated 
by the logarithms and the K-powers of the subanalytic functions on X, i.e.
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CK (X) =

⎧⎨
⎩

N∑
i=1

ci

M∏
j=1

f
αi,j

i,j log gi,j : M,N ∈ N×, fi,j , gi,j ∈ S+ (X) , αi,j ∈ K, ci ∈ FK

⎫⎬
⎭ .

Let

CK =
{
CK (X) : X ⊆ Rm subanalytic, m ∈ N

}
.

The functions in CK are called K-power-constructible functions.

Remark 2.3. Notice that CQ = C and if K ⊆ R, then the functions in CK are de-
finable in Ran, exp. If K 	⊆ R, then by definition CK (X) is a C-algebra. However, if 
h =

∑
ci
∏

f
αi,j

i,j log gi,j is such that all the exponents αi,j belong to R, then the real 
and imaginary parts of h belong to the R-algebra CR (X).

Let Ralg be the field of real algebraic numbers and consider the expansion RRalg
an of 

Ran by all power functions with exponents in Ralg. It is shown in [17] that the parametric 

integrals of all the functions definable in RRalg
an are definable in Ran,exp. However, this 

is not the case if we allow the exponents of the power functions to range in the whole 
field R. Indeed, in [27, Prop. 2.1] the author produces an example of a function f in 
two variables x and y, defined as a composition of subanalytic functions and irrational 
powers (in particular, definable in the o-minimal structure Ran, exp and even in Rpow

an ), 
such that the parametric integral (with respect to y) of f is not definable in Ran, exp. 
The argument goes as follows: Soufflet proves that functions definable in Ran,exp that 
have a formal asymptotic expansion in a logarithmic scale (the real scale ER defined in 
[27, p. 129]) have the property that such an expansion is convergent (see [27, Theorem 
2.5]). Now, in [27, Proposition 2.1] he shows that the parametric integral of f has a 
divergent asymptotic expansion in this scale. More precisely the function f is obtained 
by right-composing a subanalytic function by a suitable irrational power of the variable 
y. This procedure differs from the one in the above definition, where we left-compose 
subanalytic functions with irrational powers. Indeed, f is not power-constructible, as our 
first result (Theorem 2.4 below) is that CK is stable under parametric integration.

Theorem 2.4. Let h ∈ CK (X ×Rn). There exists H ∈ CK (X) such that

∀x ∈ Int (h;X) ,
ˆ

Rn

h (x, y) dy = H (x) ,

where

Int (h;X) :=
{
x ∈ X : y �−→ h (x, y) ∈ L1 (Rn)

}
.
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2.2. Strong functions

In the subanalytic and constructible preparation theorems, a special role is played 
by the so-called strong functions: these are bounded subanalytic functions which can be 
expressed as the composition of a single power series (convergent in a neighbourhood of 
the closed unit polydisk) with a bounded subanalytic map. In order to define parametric 
Mellin transforms, we will need a parametric version of strong functions, where the 
parameter will be the complex number s appearing in the integration kernel of the 
Mellin transform.

We first give the definition of a subanalytic strong function and then proceed to define 
its parametric counterpart.

Definition 2.5. For N ∈ N, we let SN
c (X) be the collection of all maps ψ : X −→ RN

with components in S (X), such that ψ (X) is contained in the closed polydisk of RN

centred at zero and of radius 1. We call

Sc (X) =
⋃

N∈N×

SN
c (X)

the collection of all 1-bounded subanalytic maps defined on X.

The following definition is inspired by [10, Definition 3.3] and [5, Definition 3.6].

Definition 2.6 (Strong functions). We say that W : X −→ FK is an FK-valued subanalytic 
strong function if there are N ∈ N×, a 1-bounded subanalytic map ψ : X −→ RN and 
a series F ∈ FK �Z� in N variables Z, which converges in a neighbourhood of the closed 
polydisk DN centred at zero and of radius 32 in RN (we will say for short that F converges 
strongly, see below), such that W = F ◦ ψ. If furthermore |F − 1| < 1

2 , the function W
is called a strong unit (see [5, Remarks 3.7]).

We are now ready to define parametric strong functions: these can be written as certain 
convergent series composed with 1-bounded subanalytic maps, but the coefficients of the 
series are now (meromorphic) functions of a complex parameter s.

Definition 2.7. Let E be the field of meromorphic functions ξ : C −→ C and denote by 
DN the closed polydisk of radius 3

2 and centre 0 ∈ RN .
Given a formal power series F =

∑
I ξI (s)ZI ∈ E �Z� in N variables Z and with 

coefficients ξI ∈ E , we say that F converges strongly if there exists a closed discrete set 
P (F ) ⊆ C (called the set of poles of F ) such that:

• for every s0 ∈ C \P (F ), the power series F (s0, Z) ∈ C �Z� converges in a neighbour-
hood of DN (thus F defines a function on (C \ P (F )) ×DN );
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• for every s0 ∈ C there exists m = m (s0) ∈ N such that for all z0 ∈ DN , the 
function (s, z) �−→ (s− s0)m F (s, z) has a holomorphic extension on some complex 
neighbourhood of (s0, z0);

• P (F ) is the set of all s0 ∈ C such that the minimal such m (s0) is strictly positive.

Remark 2.8. It is easy to see that P (F ) coincides with the set of poles of the coefficients ξI
and that for each s0 ∈ P (F ) there is an integer m ∈ N such that for all I, ords0 (ξI) ≤ m.

Definition 2.9 (Parametric strong functions). Given a closed discrete set P ⊆ C, a 
function Φ : (C \ P ) × X −→ C is called a parametric strong function on X if there 
exist a 1-bounded subanalytic map ψ ∈ SN

c (X) and a strongly convergent series 
F =

∑
I ξI (s)ZI ∈ E �Z� with P (F ) ⊆ P such that,

∀ (s, x) ∈ (C \ P ) ×X, Φ (s, x) = F ◦ (s, ψ (x)) =
∑
I

ξI (s) (ψ (x))I .

Define A (X) as the collection of all parametric strong functions on X (defined on sets 
of the form (C \ P ) × X, for any closed discrete P ⊆ C). Note that if X ⊆ R0 then 
A (X) = E . We let

A = {A (X) : X ⊆ Rm subanalytic, m ∈ N} .

Remark 2.10. Since the same Φ ∈ A (X) could be presented by two different series F
with different poles, we will say “let Φ ∈ A (X) have no poles outside some closed discrete 
set P ⊆ C” to mean that there exist F, ψ such that Φ = F ◦(s, ψ) and P (F ) ⊆ P . By the 
same argument, A (X) is a C-algebra, up to defining the sum and product on a common 
domain.

2.3. Parametric powers and the Mellin transform

We introduce two parametric integral operator which will be the object of our study.

Definition 2.11.

• For X ⊆ Rm subanalytic, define

P (S+ (X)) = {Pf : C×X −→ C such that Pf (s, x) = f (x)s , for some f ∈ S+ (X)}.

The parametric powers of S are the functions in the collection

P (S+) = {P (S+ (X)) : X ⊆ Rm subanalytic, m ∈ N}.

• Let F = {F (X) : X ⊆ Rm subanalytic, m ∈ N} be a collection of real- or complex-
valued functions and Σ ⊆ C. If f ∈ F (X ×R) is such that for all (s, x) ∈ Σ ×X, y �−→
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ys−1f (x, y) ∈ L1 (R>0), define the parametric Mellin transform of f on Σ ×X as the 
function

MΣ [f ] (s, x) =
+∞ˆ

0

ys−1f (x, y) dy, ∀ (s, x) ∈ Σ ×X.

The parametric Mellin transforms of F on Σ are the elements of the collection

MΣ [F ] = {MΣ [f ] : f as above, for some X} .

Our next aim is to define a collection of algebras of functions which is stable under 
parametric integration and which contains both the parametric powers of S and the 
Mellin transforms of CC on C (Definition 2.13). In order to motivate the definition, let 
us give three simple examples.

Examples 2.12. Let X ⊆ Rm be subanalytic and a, b ∈ S (X) be such that for all x ∈
X, 1 ≤ a (x) ≤ 2 ≤ b (x).

(1) Let χ1 (x, y) be the characteristic function of the set

B1 = {(x, y) : x ∈ X, 0 < y < a (x)}

and consider the subanalytic function

f (x, y) = χ1 (x, y) a (x) b (x)
a (x) b (x) − y

∈ S (X ×R) .

Since 1 ≤ f (x, y) ≤ 2, the parametric Mellin transform of f is well defined on 
Σ1 = {s ∈ C : � (s) > 0}, is holomorphic in s and is given by

MΣ1 [f ] (s, x) =
a(x)ˆ

0

ys−1 a (x) b (x)
a (x) b (x) − y

dy

=
a(x)ˆ

0

ys−1
∑
k≥0

(
y

a (x) b (x)

)k

dy.

The series in the above integral converges normally on B1, hence we can permute 
sum and integral and write

MΣ1 [f ] (s, x) =
∑
k≥0

(a (x) b (x))−k

a(x)ˆ
ys−1+kdy
0
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= (a (x))s
∑
k≥0

(b (x))−k

s + k
.

Notice that in this computation we create both the parametric power of a subanalytic 
function, and a series of functions depending on the complex variable s and on the 
real variable x. The above series defines a parametric strong function on C×X, with 
poles at zero and at the negative integers.

(2) Let Σ2 = {s ∈ C : � (s) < 1} and χ2 (x, y) be the characteristic function of the set

B2 = {(x, y) : x ∈ X, y > a (x)} .

Consider the subanalytic function g (x, y) = χ2 (x, y) y
(
1 + a(x)

b(x)y

)
∈ S (X ×R). 

We aim to compute the parametric integral (with respect to the variable y) of the 
function y−2 (g (x, y))s. Since 0 ≤ a(x)

b(x)y ≤ 1
2 on B2, such an integral exists on Σ2×X

and

I (g; Σ2 ×X) :=
+∞ˆ

a(x)

ys−2
(

1 + a (x)
b (x) y

)s

dy =
+∞ˆ

a(x)

ys−2
∑
k

(
s

k

)(
a (x)
b (x) y

)k

dy

=
∑
k

(
s

k

)(
a (x)
b (x)

)k
+∞ˆ

a(x)

ys−2−kdy = − (a (x))s−1 ∑
k

(
s

k

)
(b (x))−k

s− 1 − k
.

Again, the above series defines a parametric strong function on C ×X, with poles 
at the positive integers.

(3) Let h (s, x, y) = f (x, y) ys−1 + y−2 (g (x, y))s. Direct calculation shows that, letting

Int (h; (C \ Z) ×X) :=
{
(s, x) ∈ (C \ Z) ×X : y �−→ h (s, x, y) ∈ L1 (R)

}
,

we have

Int (h; (C \ Z) ×X) = {s ∈ C \ Z : 0 < � (s) < 1} ×X.

However, the function H defined on (C \ Z) ×X by

H (s, x) = (a (x))s
∑
k≥0

(b (x))−k

s + k
− (a (x))s−1 ∑

k

(
s

k

)
(b (x))−k

s− 1 − k

depends meromorphically on s and can be seen as an interpolation of the integral of 
h on the whole C ×X.

Given a subanalytic set X ⊆ Rm, recall the definitions of the algebras A (X) of paramet-
ric strong functions and CC (X) of C-power-constructible functions, and of the collection 
P (S+ (X)) of parametric powers of subanalytic functions (Definitions 2.9, 2.2 and 2.11).
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Definition 2.13. If X ⊆ R0, then define CM (X) = E . If X ⊆ Rm, with m > 0, then 
we let CM (X) be the A (X)-algebra generated by CC (X) ∪ P (S+ (X)). Every function 
h ∈ CM (X) can be written on (C \ P )×X (for some closed discrete P ⊆ C) as a finite 
sum of generators of the form

Φ (s, x) · g (x) · f (x)s , (2.1)

where g ∈ CC (X) , f ∈ S+ (X) and Φ ∈ A (X) has no poles outside P .
If h ∈ CM (X) can be presented as a sum of generators in which the parametric strong 

functions have no poles outside some common set P ⊆ C, then we say that h has no 
poles outside P . We let

CM =
{
CM (X) : X ⊆ Rm subanalytic, m ∈ N

}
be the collection of algebras of (complex) parametric power-constructible functions.

Remark 2.10 also applies to the functions in CM (X).

Remark 2.14. If h ∈ CM (X) has no poles outside some closed discrete set P , then for 
all s ∈ C \P, x �−→ h (s, x) ∈ CC (X) and the dependence on the variables x is piecewise 
analytic, by o-minimality. Moreover, by definition of A (X), for all x ∈ X, s �−→ h (s, x)
is meromorphic on C.

The main goal of this paper is to study the nature of the parametric integrals of 
functions in CM. Let X ⊆ Rm be subanalytic, and consider a function h ∈ CM (X ×Rn)
without poles outside some closed and discrete set P ⊆ C. Then h depends on a complex 
variable s and on (m + n) real variables (let us call them x, ranging in X, and y, ranging 
in Rn). We integrate h in the variables y over Rn, whenever the integral exists, and 
study the nature of the resulting function.

The set of parameters (s, x) ∈ (C \ P ) ×X for which the integral exists is the inte-
gration locus of h.

Definition 2.15. For h ∈ CM (X ×Rn) and a closed discrete set P ⊆ C such that h has 
no poles outside P , define

Int (h; (C \ P ) ×X) :=
{
(s, x) ∈ (C \ P ) ×X : y �−→ h (s, x, y) ∈ L1 (Rn)

}
.

Our main result is the following.

Theorem 2.16. Let h ∈ CM (X ×Rn) be without poles outside some closed discrete set 
P ⊆ C. There exist a closed discrete set P ′ ⊆ C containing P and H ∈ CM (X) with no 
poles outside P ′ such that
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∀ (s, x) ∈ Int (h; (C \ P ′) ×X) , H (s, x) =
ˆ

Rn

h (s, x, y) dy.

Moreover, P ′ \ P is contained in a finitely generated Z-lattice.

The above examples and Theorem 2.16 suggest to introduce the following definition.

Definition 2.17. Let G (X) be a collection of functions f : C ×X −→ C, where X ⊆ Rm

is subanalytic and f depends meromorphically on its complex variable s. We say that 
G = {G (X) : X ⊆ Rm, m ∈ N} is stable under generalized parametric Mellin transform
if whenever f ∈ G(X ×R) has no poles outside some closed discrete set P ⊆ C, there 
exist a closed discrete set P ′ ⊆ C containing P and Mf ∈ G (X) without poles outside 
P ′ such that, if g (s, x, y) = ys−1f (s, x, y)χ(0,+∞) (y), then

∀ (s, x) ∈ Int (g; (C \ P ′) ×X) , Mf (s, x) =
+∞ˆ

0

ys−1f (s, x, y) dy.

Corollary 2.18. CM is the smallest system of A-algebras containing CC and stable under 
the generalized parametric Mellin transform.

Proof. By Theorem 2.16, CM is such a system. Let us show that it is the smallest.
Let f ∈ S (X). Let y be a single variable and let χ (x, y) be the characteristic function 

of the set {(x, y) : 0 < y < |f (x)|} and consider the parametric Mellin transform of the 
function (s, x, y) �−→ f (s, x, y) = s · χ (x, y) on Σ = {s ∈ C : � (s) > 0}:

MΣ [f ] (s, x) =
+∞ˆ

0

sys−1χ (x, y) dy

= s

|f(x)|ˆ

0

ys−1dy = |f (x)|s .

If D is a system of A-algebras containing CC, then D contains the function f , and if D is 
stable under the generalized parametric Mellin transform, then D contains the extension 
Mf of MΣ [f ] to the whole complex plane. Hence P (S+) ⊆ D, i.e. CM ⊆ D. �
2.3.1. Parametric powers of K-power-subanalytic functions

We consider several collections, defined via minor variations of the definition of CM, 
and which we will prove to be stable under parametric integration.

Let K ⊆ C be a subfield.
In Definition 2.9, we replace E by

EK := {ξ ∈ E : P (ξ) ⊆ K}
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(where P (ξ) is the set of poles of ξ) and we define AK accordingly.
We let CK,M (X) be the AK (X)-algebra generated by CK (X) ∪ P (S+ (X)). Every 

element of CK,M (X) can be written as a finite sum of generators of the form (2.1), 
where now Φ ∈ AK (X) and g ∈ CK (X).

Next, we define a similar system of algebras which furthermore contains the parametric 
powers of K-powers of subanalytic functions. For this, given X ⊆ Rm subanalytic, let

P
(
SK

+ (X)
)

= {Pf : C ×X −→ C such that Pf (s, x) = f (x)αs ,

for some f ∈ S+ (X) and α ∈ K}

and CP(K),M (X) be the AK (X)-algebra generated by CK (X) ∪ P
(
SK

+ (X)
)
. Every ele-

ment of CP(K),M (X) can be written as a finite sum of generators of the form

Φ (s, x) g (x) f1 (x)α1s · · · fn (x)αns ,

where Φ ∈ AK (X) , g ∈ CK (X) , n ∈ N, αi ∈ K and fi ∈ S+ (X).
Let

CK,M =
{
CK,M (X) : X ⊆ Rm subanalytic, m ∈ N

}
,

CP(K),M =
{
CP(K),M (X) : X ⊆ Rm subanalytic, m ∈ N

}
.

Theorem 2.19. The statement of Theorem 2.16 also holds if we replace CM by either 
CK,M or CP(K),M (the closed discrete set P ′ is now contained in K).

Arguing as in Corollary 2.18, it follows that CK,M is the smallest system of AK-
algebras containing CK and stable under parametric Mellin transform. Notice that the 
collection CK of K-power-constructible functions coincides with the collection of all func-
tions in CK,M which happen not to depend on the parameter s.

The system of AK-algebras CP(K),M also contains CK and is stable under parametric 
Mellin transform. As a consequence of the proof of Theorem 2.19, we show (see Theo-
rem 6.3 and Remark 6.5) that the system CP(C),M is strictly larger than CM.

3. Toolbox

Throughout this paper, X ⊆ Rm is a subanalytic set which serves as space of pa-
rameters (we never integrate with respect to the variables ranging in X). Since all the 
classes D of functions defined in Sections 2.1 and 2.3 are stable under multiplication 
by a subanalytic function, when studying a function f ∈ D (X ×Rn), we are allowed 
to partition X into subanalytic cells, replace X by one of the cells of the partition and 
work disjointly in restriction to such a cell. In particular, we may always assume that X
is itself a subanalytic cell, and that all cells in X ×Rn project onto X.
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If D is any of the classes defined in Sections 2.1 and f ∈ D (X ×Rn), we often compute 
the integral of f with respect to the variables ranging in Rn. If X × Rn is partitioned 
into finitely many subanalytic cells, then only the cells which have nonempty interior in 
X ×Rn contribute to the integral. This motivates the following definition.

Definition 3.1. Let A ⊆ X × R be a subanalytic cell. We say that A is open over X if 
there are ϕ1, ϕ2 ∈ S (X) ∪ {±∞} such that for all x ∈ X, ϕ1 (x) < ϕ2 (x) and

A = {(x, y) : x ∈ X, ϕ1 (x) < y < ϕ2 (x)} .

Notation 3.2. For x ∈ X, define Ax = {y ∈ Rn : (x, y) ∈ A}.
Hence, if f ∈ D (A), then

Int (f ;C ×X) =
{
(s, x) ∈ C ×X : y �−→ f (s, x, y) ∈ L1 (Ax)

}
.

Given a set A, we denote by χA the characteristic function of A.

3.1. Non-compensation arguments

In this section we prove a result (Proposition 3.4 below) which is a crucial ingredient 
of the proof of the Stability Theorems 2.4 and 2.16, and of the study the asymptotics 
of the functions of our classes. The statement of Proposition 3.4 is stronger than the 
result that we actually need here, since it involves both purely imaginary powers and 
purely imaginary exponentials. However, the full generality of this result will be used in a 
forthcoming paper, in which we will study the Fourier transforms of power-constructible 
functions.

We first recall the definition of continuously uniformly distributed modulo 1 functions, 
which is a key ingredient in Proposition 3.4 (for the properties and uses of this notion, 
see [18]). In what follows, voli stands for the Lebesgue measure in Ri, i ≥ 1.

Definition 3.3. Let {x} := x − �x� be the fractional part of the real number x and let 
F = (f1, . . . , f�) : [0, +∞) → R� be any map. If I1, . . . , I� ⊆ R are bounded intervals 
with nonempty interior, we denote by I the box 

∏�
j=1 Ij . For T ≥ 0, let

WF,I,T := {t ∈ [0, T ] : {F (t)} ∈ I} ,

where {F (t)} denotes the tuple ({f1(t)}, . . . , {f� (t)}).
The map F is said to be continuously uniformly distributed modulo 1, in short c.u.d. 

mod 1, if for every box I ⊆ [0, 1)�,

lim vol1 (WF,I,T ) = vol� (I) .

T→+∞ T
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We use the c.u.d. mod 1 property in the proof of the following proposition. There, 
we deal with a family of complex exponential functions having as phases the functions 
in the family (σj log(y) + pj(y))j∈{1,...,n}. It turns out that in general we cannot extract 
from this family a c.u.d. mod 1 subfamily, since log is not a c.u.d. mod 1 function 
(although the family σj log y + pj(y) is, whenever pj is not constant). To overcome this 
technical difficulty, we compose σj log y + pj(y) with the change of variables y = et, 
after which we are able to extract a c.u.d. mod 1 subfamily from the family of phases 
(σjt + pj(et))j∈{1,...,n}.

Proposition 3.4. Let r ≥ −1, b ≥ 1, ν ∈ N, n ∈ N \ {0} , c1, . . . , cn ∈ C, σ0, . . . σn ∈ R

and p1, . . . , pn ∈ R[X] be such that pj(0) = 0 for j = 1, . . . , n. Suppose that σj log(y) +
pj(y) 	= σk log(y) + pk(y) for j 	= k, and let

f (y) = yr (log y)ν
n∑

j=1
cjy

iσjeipj(y).

The following statements hold.

(1) If f ∈ L1 ((b,+∞)) then cj = 0 for all j = 1, . . . , n.
(2) Let E(y) =

∑n
j=1 cjy

iσjeipj(y), where for at least one j ∈ {1, . . . , n} we have cj 	= 0
and σj log(y) +pj(y) 	= 0. There exist ε > 0 and a sequence of real numbers (ym)m∈N
which tends to +∞, such that for all m ≥ 0, |E(ym)| ≥ ε.

(3) There exist δ > 0 and two sequences of real numbers (y1,m)m∈N , (y2,m)m∈N which 
both tend to +∞, such that for all m ≥ 0, |E(y1,m) −E(y2,m)| ≥ δ.

Proof. We may assume that at least one of the functions gj (y) = σj log(y) + pj(y) is 
not constant. Indeed, since pj(0) = 0, if gj is constant then it is zero, hence in this case 
n = 1 and f is not integrable unless c1 = 0. Therefore we may assume without loss of 
generality that g1 is not constant, and that c1 	= 0.

If f ∈ L1 ((b,+∞)), the following integral is finite for all x such that ex ≥ b:

I(x) :=
exˆ

b

|f(y)| dy.

Performing the change of variables t = log(y) we obtain

I(x) =
xˆ

tνet(r+1)

∣∣∣∣∣∣
n∑

j=1
cjeiσjteipj(et)

∣∣∣∣∣∣ dt.

log(b)
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Set ϕ(t) =
∑n

j=1 cjeiσjteipj(et) and fj(t) = σjt + pj(et) for j = 1, . . . , n. Assume that 
f1, . . . , f�, for � ≤ n, is a basis over Q of the Q-vector space generated by f1, . . . , fn. We 
write

fk = rk,1f1 + · · · + rk,�f�, for k = � + 1, . . . , n,

we denote by ρj the least common multiple of the denominators of r�+1,j , . . . , rn,j , and we 
set f̃j := fj/2πρj , for j = 1, . . . , � (note that this family is still Q-linearly independent). 
Then

fk = 2πmk,1f̃1 + · · · + 2πmk,�f̃�, for k = � + 1, . . . , n,

for some mk,1, . . . , mk,� ∈ Z, and

ϕ(t) = P (e2πif̃1(t), . . . , e2πif̃�(t)),

where P ∈ C
[
X1, . . . , X�, X

−1
1 , . . . , X−1

�

]
is a Laurent polynomial.

Note that P contains at least the monomial c1X1 (we can always choose f1 as an 
element of our basis, since c1 	= 0 and g1 	= 0). Moreover since by hypothesis fj(t) 	= fk(t), 
(as functions) for j 	= k, the monomials of P cannot cancel out. It follows that P is 
not constant, and therefore the algebraic set V := {P = 0} does not contain the torus 
T := (S1)�. By continuity of P , we can find a real number ε > 0 and intervals Aε

j ⊂ [0, 1), 
j = 1, . . . , �, such that |ϕ(t)| ≥ ε on the set

Wε =
{
t ≥ log(b) :

{
f̃j(t)

}
∈ Aε

j , j = 1 . . . , �
}
.

We claim that the map F =
(
f̃1, . . . , f̃�

)
is c.u.d. mod 1 (which implies in particular 

that Wε is nonempty). For this, we use the criterion [18, Theorem 9.9], i.e. we show that 
for any h ∈ Z� such that h 	= 0,

lim
T→+∞

1
T

T̂

1

e2πi〈h,F (t)〉 dt = 0.

We prove in fact that there exists T0 ≥ 1 such that

J(T ) =
T̂

T0

e2πi〈h,F (t)〉 dt

is bounded from above. For h ∈ Z� such that h 	= 0, we can write 〈h, F (t)〉 = σt + p(et), 
with σ ∈ R and p ∈ XR[X]. Since the components of F are Q-linearly independent, 
σt + p(et) is not identically zero (equivalently, not constant). We can assume that p 	= 0, 
since if not, then J(T ) is clearly bounded, and we are done. Let us write
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ρ(t) = 〈h, F (t)〉
ad

= edt + ad−1

ad
e(d−1)t + . . . + σ

ad
t,

for some d ≥ 1, ai ∈ R and ad ∈ R \ {0}. Fix T0 sufficiently large so that t �→ ρ

and t �→ ρ′(t) are strictly increasing (to +∞) on [T0, +∞), and perform the change of 
variables u = ρ(t) in J(T ) to obtain

J(T ) =
T̂

T0

e2πiadρ(t) dt =
ρ(T )ˆ

ρ(T0)

e2πiadu

ρ′(ρ−1(u)) du.

By the second mean value theorem for integrals applied to the real part of J(T ), we have

�(J(T )) = 1
ρ′(T0)

τ̂

ρ(T0)

cos(2πadu) du,

for some τ ∈ (ρ(T0), ρ(T )]. This shows that the real part of J(T ) is bounded from above, 
and so is the imaginary part of J(T ) by the same computation.

Therefore F is c.u.d. mod 1 and hence, by definition, the set Wε has infinite measure. 
Since

I(x) ≥ ε

ˆ

[log(b),x]∩Wε

tνe(r+1)t dt

and ν ≥ 0, r ≥ −1, this implies that

+∞ˆ

b

f (y) dy = lim
x−→+∞

I(x) = +∞,

and proves (1).
To prove (2) and (3) we may still assume that c1 	= 0 and g1 	= 0, by our hypothesis 

on E. In this situation, since we have shown that Wε has infinite measure, one can 
find a sequence (tm)m∈N which tends to +∞, such that for all m ≥ 0, tm ∈ Wε, and 
therefore |ϕ(tm)| ≥ ε. We set, for all m ∈ N, ym = etm , and we obtain ym → +∞ and 
E(ym) = ϕ(tm), which proves (2).

We proceed in the same way to prove (3). Since P is not constant on T , by continuity of 
P one can find δ > 0 and intervals Aδ

j , B
δ
j ⊂ [0, 1), j = 1, . . . , �, such that |ϕ(t) −ϕ(t′)| ≥ δ

for any t, t′ such that t ∈ Aδ := {u ∈ R, {f̃j(u)} ∈ Aδ
j , j = 1, . . . , �} and t′ ∈ Bδ := {u ∈

R, {f̃j(u)} ∈ Bδ
j , j = 1, . . . , �}. But since F is c.u.d. mod 1, one can find two sequences 

(t1,m)m∈N and (t2,m)m∈N tending to +∞, such that for all m ∈ N, t1,m ∈ Aδ and 
t2,m ∈ Bδ. Finally, we set y1,m = et1,m and y2,m = et2,m to obtain (3). �
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3.2. Properties of parametric strong functions

In this section we give some examples of parametric strong functions and list their 
properties. The results in this section are stated for E and A for simplicity, but they also 
hold for EK and AK.

Examples 3.5. All (finite sum of finite products) of the following functions are parametric 
strong functions (i.e. they belong to A).

• Any subanalytic strong function (as in Definition 2.6), clearly.
• (U (x))s, where U ∈ S (X) is a subanalytic strong unit of the form U (x) = 1 +F◦ψ (x), 

with ψ ∈ Sc (X), F ∈ R �Z� and supz∈DN |F (z)| < 1 (where DN is the closed 
polydisk in RN of radius 3

2 ). To see this, notice that the series F̃ = (1 + F (Z))s =∑(
s
i

)
(F (Z))i ∈ E �Z� is strongly convergent (without poles) and (U (x))s = F̃ ◦

(s, ψ (x)).
• Let B = {(x, y) ∈ (2,+∞) ×R : y > x} and Φ (s, x, y) =

∑
i≥2

ξi (s)
(

x
y

)i

∈ A (B). 

Then ϕ (s, x) :=
+∞ˆ

x2

Φ (s, x, y) dy ∈ A ((2,+∞)). To see this, integrate term by term 

(which is possible, since the series Σiξi (s)Zi is strongly convergent) and find that 
ϕ (s, x) =

∑
i≥0

ξi+2(s)
i+1 x−i, which is again a strongly convergent series with coefficients 

in E , composed with the 1-bounded subanalytic function x−1 ∈ S ((2,+∞)).

Remark 3.6.

• If Φ ∈ A (X) has no poles outside P , then clearly for every fixed s ∈ (C \ P ), x �−→
Φ (s, x) is a complex-valued subanalytic strong function (in the sense of Definition 2.6). 
In particular, up to decomposing X into subanalytic cells, we may suppose that Φ
depends analytically on x.

• If Φ (s, x) = F ◦ (s, ψ (x)) ∈ A (X) is a parametric strong function then

{
ξI (s)ψ (x)I : I ∈ NN

}

is a normally summable family of functions: the family 
{
supx∈X

∣∣∣ξI (s)ψ (x)I
∣∣∣} ⊆

[0, 1] is summable. In particular, if F̃ is obtained from F by taking the sum only over 
some subset of the support of F and rearranging the terms, then F̃ ◦ (s, ψ (x)) is a 
parametric strong function (without poles outside the set P (F )).

Remark 3.7. Let (Z, Y ) be an (N + M)-tuple of variables and F (s;Z, Y ) =∑
I,J ξI,J (s)ZIY J ∈ E �Z, Y � be a strongly convergent series. Then, for all J ∈ NM , 
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the series FJ :=
∑

I ξI,J (s)ZI ∈ E �Z� is strongly convergent. Moreover, for every 1-
bounded subanalytic map c : X −→ RN , we have ξcJ (s, x) := FJ ◦ (s, c (x)) ∈ A (X). 
Furthermore the series Fc :=

∑
J ξcJ (s, x)Y J ∈ A (X) �Y � is strongly convergent, in 

the sense that the family {ξJ,x (s) := ξcJ (s, x)}J,x ⊆ E has a non-accumulating set of 
common poles with bounded order and the series 

∑
J ξcJ (s, x)Y J defines a function on 

(C \ P ) ×X ×DM which is meromorphic in s and analytic in (x, Y ).
It follows that, for every 1-bounded map γ : X −→ RM , the parametric strong 

function Φ (s, x) := F ◦ (s, c (x) , γ (x)) can also be written as the strongly convergent 
power series Fc (with suitable parametric strong functions as coefficients), evaluated at 
Y = γ (x). We call Fc ◦ (s, γ (x)) =

∑
J ξcJ (s, x) (γ (x))J a nested presentation of Φ.

We will often apply the above to the following situation: let B ⊆ Rm+1 a subanalytic 
set such that the projection onto the first m coordinates of B is X. Fix coordinates 
(x, y), where x is an m-tuple and y is a single variable. Suppose that (c (x) , γ (x, y))
is a 1-bounded subanalytic map on B, where the first component only depends on the 
variables x. Then the nested presentation of F ◦ (s, c (x) , γ (x, y)) ∈ A (B) is of the form

Fc ◦ (s, γ (x, y)) =
∑
J

ξcJ (s, x) (γ (x, y))J , (3.1)

where the coefficients ξcJ now belong to A (X).

Remark 3.8. Let s be a fixed real or complex number. Then Examples 3.5, Remarks 3.6
and 3.7 also apply to real- or complex-valued subanalytic strong functions.

3.3. Subanalytic preparation

Let K ⊆ C be a subfield and recall that FK is R if K ⊆ R and C otherwise.

Definition 3.9. Let X ⊆ Rm be a subanalytic cell and

B = {(x, y) : x ∈ X, a (x) < y < b (x)} , (3.2)

where a, b : X −→ R are analytic subanalytic functions with 1 ≤ a (x) < b (x) for all x ∈
X, and b is allowed to be ≡ +∞. We say that B has bounded y-fibres if b < +∞ and 
unbounded y-fibres if b ≡ +∞.

• A 1-bounded subanalytic map ψ : B −→ RM+2 ∈ SM+2
c (B) is y-prepared if it has 

the form

ψ (x, y) =
(
c (x) ,

(
a (x)
y

) 1
d

,

(
y

b (x)

) 1
d

)
, (3.3)
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where d ∈ N.
If b ≡ +∞, then we will implicitly assume that the last component is missing and 
hence ψ : B −→ RM+1.

• An FK-valued subanalytic strong function W : B −→ FK is ψ-prepared if ψ is a 
y-prepared 1-bounded subanalytic map as in (3.3) and

W (x, y) = F ◦ ψ (x, y) ,

for some power series F ∈ FK �Z� which converges in a neighbourhood of the ball 
of radius 3

2 . Notice that W has also a nested presentation (see 3.7) as a strongly 
convergent power series with coefficients FK-valued subanalytic strong functions on 

X, evaluated at γ (x, y) =
((

a(x)
y

) 1
d

,
(

y
b(x)

) 1
d

)
• A subanalytic function f ∈ S (B) is prepared if there are ν ∈ Z, an analytic function 

f0 ∈ S (X) and a ψ-prepared real-valued subanalytic strong unit U (for some ψ as in 
(3.3)) such that

f (x, y) = f0 (x) y ν
dU (x, y)

Let us recall some notation from [5, Definitions 3.2, 3.3, 3.4 and 3.8]. In partic-
ular, A ⊆ Rm+1 will be a cell open over Rm (it will always be possible to sup-
pose that the base of A is X ⊆ Rm) with analytic subanalytic centre θA and 
such that the set IA := {y − θA (x) : (x, y) ∈ A} is contained in one of the sets 
(−∞,−1) , (−1, 0) , (0, 1) , (1,+∞), as in [5, Definition 3.4]. We now perform a change of 
coordinates with the aim of mapping the set IA to the interval (1,+∞): there are unique 
sign conditions σA, τA ∈ {−1, 1} such that

A = {(x, y) : x ∈ X, aA (x) < σA (y − θA (x))τA < bA (x)} (3.4)

for some analytic subanalytic functions aA, bA such that 1 ≤ aA (x) < bA (x) ≤ +∞. Let

BA = {(x, y) : x ∈ X, aA (x) < y < bA (x)} (3.5)

and ΠA : BA −→ A be the bijection

ΠA (x, y) = (x, σAy
τA + θA (x)) , Π−1

A (x, y) = (x, σA (y − θA (x))τA) . (3.6)

We will still denote by ΠA the map C ×BA � (s, x, y) �−→ (s,ΠA (x, y)) ∈ C ×A.

Remark 3.10. By [5, Definition 3.4(3)], if A is a cell of the form A = {(x, y) : x ∈
X, y > f (x)}, then σA = τA = 1 and θA = 0. Hence in this case aA = f, bA = +∞ and 
BA = A.
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Proposition 3.11 ([20] [5, Remark 3.12]). Let F ⊆ S (X ×R) be a finite collection of 
subanalytic functions. There is a cell decomposition of Rm+1 compatible with X such 
that for each cell A that is open over Rm (which we may suppose to be of the form (3.4)) 
and for every h ∈ F , h ◦ ΠA is prepared on BA.

4. Preparation of (parametric) power-constructible functions

Let K ⊆ C be a subfield and recall that FK is R if K ⊆ R and C otherwise. In this 
section, y will be a single variable. For each of the classes introduced in Sections 2.1
and 2.3, we will give a prepared presentation of its elements, with respect to the last 
subanalytic variable (denoted by y).

4.1. Preparation of power-constructible functions

Definition 4.1. Let B be as in (3.2). A generator T of the FK-algebra CK (B) is called 
prepared if

T (x, y) = G0 (x) y
η
d (log y)μ W (x, y) , (4.1)

where G0 ∈ CK (X) , η ∈ K, μ ∈ N and W is a ψ-prepared FK-valued subanalytic strong 
function, for some 1-bounded ψ as in (3.3).

It follows from Remark 3.8 that, in the notation of (3.1), if B has bounded y-fibres
(i.e. b < +∞), then W can be written as

∑
m,n

ξcm,n (x)
(
a (x)
y

)m
d
(

y

b (x)

)n
d

, (4.2)

and if B has unbounded y-fibres (i.e. b ≡ +∞), then W can be written as

∑
k

ξck (x)
(
a (x)
y

) k
d

. (4.3)

Proposition 4.2. Let F ⊆ CK (X ×R) be a finite collection of K-power-constructible func-
tions. Then there is a cell decomposition of Rm+1 compatible with X such that for each 
cell A that is open over Rm (which we may suppose to be of the form (3.4)) and each 
h ∈ F , h ◦ ΠA is a finite sum of prepared generators of the form 4.1.

Proof. The proof is a straightforward refinement of the proofs of [10, Corollary 3.5]
and [5, Proposition 3.10]: one prepares first all the subanalytic data appearing in h, 
by Proposition 3.11, and then observes the effect of applying log or a power η ∈ K to 
a subanalytic prepared function. In particular, notice that if U (x, y) is a ψ-prepared 
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subanalytic strong unit, then Uη is again a ψ-prepared FK-valued subanalytic strong 
unit. �
4.2. Preparation of parametric strong functions

Let K ⊆ C be a subfield and refer to the definitions of EK, AK in Section 2.3.1.

Definition 4.3. Let B be as in (3.2). A parametric strong function Φ ∈ AK (B) is called 
ψ-prepared (where ψ is as in (3.3)) if there exists a strongly convergent series F =∑

ξI (s)ZI ∈ EK �Z� such that

∀ (s, x, y) ∈ (C \ P (F )) ×B, Φ (s, x, y) = F ◦ (s, ψ (x, y)) . (4.4)

Notice that if Φ is ψ-prepared, then Φ has a nested presentation (see Remark 3.7) as 

a power series with coefficients in AK (X), evaluated at γ (x, y) =
((

a(x)
y

) 1
d

,
(

y
b(x)

) 1
d

)
:

∀ (s, x, y) ∈ C \ P (F ) ×B, Φ (s, x, y) =
∑
m,n

ξcm,n (s, x)
(
a (x)
y

)m
d
(

y

b (x)

)n
d

, (4.5)

where ξcm,n (s, x) =
∑

J ξJ,m,n (s) (c (x))J ∈ AK (X).

Remark 4.4. Let Φ ∈ AK (B) be ψ-prepared, as above. If B has unbounded y-fibres (i.e. 
b ≡ +∞ in (3.2)), recall that

ψ (x, y) =
(
c (x) ,

(
a (x)
y

) 1
d

)
, (4.6)

hence the nested ψ-prepared form of Φ is

∀ (s, x, y) ∈ (C \ P (F )) ×B, Φ (s, x, y) =
∑
k

ξck (s, x)
(
a (x)
y

) k
d

, (4.7)

where ξck (s, x) =
∑

J ξJ,k (s) (c (x))J ∈ AK (X).

Lemma 4.5. Let F ⊆ AK (X ×R) be a finite set of functions Φ which have no poles 
outside some closed discrete set P ⊆ K. Then there is a cell decomposition of Rm+1

compatible with X such that for each cell A that is open over Rm (which we may suppose 
to be of the form (3.4)), each Φ ◦ΠA is ψ-prepared on (C \ P )×BA (for some y-prepared 
1-bounded subanalytic map ψ as in (3.3)).

Proof. We will consider the case of a single function Φ for simplicity of notation (the 
general case is obtained by taking as Φ the product of the functions in F). Write Φ =
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G ◦ (s, η), where G =
∑

I ϕI (s)T I ∈ E �T � is a strongly convergent series in N variables 
T and η = (η1, . . . , ηN ) : X ×R −→ RN is a 1-bounded subanalytic map.

Apply subanalytic preparation (Proposition 3.11) to the components of η. This yields 
a cell decomposition of X × R such that, if A is a cell of the form (3.4), then the 

components of η◦ΠA are ψ̂-prepared BA, where ψ̂ (x, y) =
(
ĉ (x) ,

(
aA(x)

y

) 1
d

,
(

y
bA(x)

) 1
d

)
is a y-prepared strongly subanalytic map:

ηj ◦ ΠA (x, y) = cj (x) y
�j
d vj (x, y) (1 ≤ j ≤ N) ,

where cj ∈ S (X) is analytic, �j is an integer and vj is a ψ̂-prepared strong unit. By 

rescaling the unit, we may furthermore assume that 
∣∣∣cj (x) y

�j
d

∣∣∣ ≤ 1 on the closure of 
BA. Partition

{1, . . . , N} =
⋃

∗∈{<,=,>}
J∗

=
⋃

∗∈{<,=,>}

{
j : �j

d
∗ 0

}

and notice that the subanalytic map c̃ := (c̃1, . . . , c̃N ) given by

c̃j (x) :=

⎧⎪⎪⎨
⎪⎪⎩
cj (x) · (aA (x))

�j
d (j ∈ J<)

cj (x) (j ∈ J=)

cj (x) · (bA (x))
�j
d (j ∈ J>)

is 1-bounded. Hence,

ηj ◦ ΠA (x, y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
c̃j (x)

(
aA(x)

y

)− �j
d

vj (x, y) (j ∈ J<)

c̃j (x) vj (x, y) (j ∈ J=)

c̃j (x)
(

y
bA(x)

) �j
d

vj (x, y) (j ∈ J>)

and, for I = (i1, . . . , iN ) ∈ NN ,

(ηj ◦ ΠA (x, y))ij = c̃j (x)ij fI,j (x, y) ,

where

fI,j (x, y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
aA(x)

y

)− �j
d ij

(vj (x, y))ij (j ∈ J<)

(vj (x, y))ij (j ∈ J=)(
y

) �j
d ij

(vj (x, y))ij (j ∈ J>)

.

bA(x)
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Notice that the fI,j are ψ̂-prepared subanalytic strong functions, hence so is their 
product fI (x, y) :=

∏
j≤N fI,j (x, y). Therefore, there is a strongly convergent power 

series with coefficients in FK

FI =
∑

K,m,n

dIK,m,nZ̃
KY m

1 Y n
2 ∈ FK

�
Z̃, Y1, Y2

�

such that fI (x, y) = FI ◦ ψ̂ (x, y).
Therefore, on BA we can write

Φ ◦ ΠA (s, x, y) =

=
∑

I=(i1,...,iN )

ϕI (s) (η ◦ ΠA (x, y))I

=
∑

I=(i1,...,iN )

ϕI (s) (c̃ (x))I fI (x, y)

=
∑

I=(i1,...,iN )

ϕI (s) (c̃ (x))I
∑

K,m,n

dIK,m,n (ĉ (x))K
(
aA (x)

y

)m
d
(

y

bA (x)

)n
d

=
∑

I,K,m,n

dIK,m,nϕI (s) (c̃ (x))I (ĉ (x))K
(
aA (x)

y

)m (
y

bA (x)

)n

.

Now, if we let Ĩ = (I,K) and

ξĨ,m,n (s) = dIK,m,nϕI (s) ,

then the family 
{
ξĨ,m,n

}
is strong and the series

F =
∑
Ĩ,m.n

ξĨ,m,n (s)Z ĨY m
1 Y n

2 ∈ EK �Z, Y1, Y2�

is strongly convergent (with P (F ) = P (G)). Let c (x) = (c̃ (x) , ĉ (x)). Then, in the 
notation of (3.3), on BA we have

Φ ◦ ΠA (s, x, y) = F ◦ (s, ψ (x, y)) ,

so Φ ◦ (s,ΠA (x, y)) is ψ-prepared on BA, as required. �
4.3. Preparation of parametric power-constructible functions

In this section we let D be either CK,M or CP(K),M (see Section 2.3.1).
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Definition 4.6. Let B be as in (3.2) and P ⊆ K be a closed discrete set. A generator 
T ∈ D (B) with no poles outside P is prepared if for all (s, x, y) ∈ (C \ P ) ×B,

T (s, x, y) = G0 (s, x) y
�s+η

d (log y)μ Φ (s, x, y) , (4.8)

where G0 ∈ D (X) , �, η ∈ K, μ ∈ N and Φ ∈ AK (B) is a ψ-prepared parametric strong 
function (see Definition 4.3). If D = CK,M, then we require that � ∈ Z.

Proposition 4.7. Let P ⊆ K be a closed discrete set and h ∈ D (X ×R) have no poles 
outside P . Then there is a cell decomposition of Rm+1 compatible with X such that for 
each cell A that is open over Rm (which we may suppose to be of the form (3.4)), h ◦ΠA

is a finite sum of prepared generators on (C \ P ) ×BA.

Proof. Suppose first that D = CP(K),M. Write h as a finite sum of generators of the form

T (s, x, y) = Φ (s, x, y) · g (x, y) · f1 (x, y)α1s · . . . · fn (x, y)αns ,

with Φ ∈ AK (X ×R) , g ∈ CK (X ×R) , fi ∈ S+ (X ×R) , αi ∈ K. Apply Proposi-
tion 3.11 simultaneously to all the fi and to all the subanalytic data in all the Φ and g
appearing in the generators. This yields a cell decomposition of X×R such that on each 
cell A with centre θA, there is a y-prepared subanalytic map ψ as in (3.3) such that, 
after composing with ΠA all the subanalytic functions considered above are prepared. In 
particular, each of the fj appearing in the parametric power, after composing with ΠA, 
has the form

f̃j (x) y
�j
d Uj (x, y) ,

where f̃j ∈ S+ (X) , �j ∈ Z and Uj ∈ S (BA) is a ψ-prepared subanalytic strong unit. 
Hence, by the second of Examples 3.5, Ξj (s, x, y) := |Uj (x, y)|s ∈ AK (BA) and is ψ-
prepared.

Apply Proposition 4.2 to prepare each g ◦ ΠA, which can be hence written as a finite 
sum of terms of the form

gj (x) y
ηj
d (log y)νj Wj (x, y) ,

where νj ∈ N, ηj ∈ K, gj ∈ CK (X) is analytic and Wj is an FK-valued ψ-prepared 
subanalytic strong function on BA.

Apply Lemma 4.5 to ψ-prepare each Φ ◦ ΠA on BA as Fj ◦ (s, ψ (x, y)), where ψ has 
now some extra components depending only on the variables x. Notice that this does 
not affect the preparation work already done.

Finally, define Gj (s, x) = f̃j (x)αjs gj (x) and Φj (s, x, y) = Fj ◦(s, ψ (x, y)) ·Wj (x, y) ·
Ξj (s, x, y). Then clearly Gj ∈ CK,M (X) and Φj ∈ AK (BA) is ψ-prepared, with no poles 
outside P , hence we have written h ◦ ΠA as a finite sum of terms of the form
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Gj (s, x) · y
αj�js+ηj

d · (log y)νj Φj (s, x, y)

and we are done.
If D = CK,M, then repeat the above proof with n = α1 = 1. �

5. Integration of prepared (parametric) power-constructible generators

In this section we let D be either CK,M or CP(K),M.
Given a cell B ⊆ Rm+1, we study the integrability, and compute the integral, of a 

prepared generator of D (B).
Let B be as in (3.2) and T ∈ D (B) be a prepared generator with no poles outside 

P (for some discrete closed set P ⊆ K). We aim to study the nature of the parametric 
integral

b(x)ˆ

a(x)

T (s, x, y) dy, (5.1)

for all (s, x) ∈ (C \ P ) ×X such that y �−→ T (s, x, y) ∈ L1 (Bx).
We prove that there exist a closed discrete set P ′ ⊇ P and a function H ∈ D (X) with 

no poles outside P ′ such that the above integral coincides with H.
We start by recalling the classical formula to compute the antiderivative of any power-

log monomial in y.

Lemma 5.1. Let �, γ ∈ K, d, μ ∈ N with �, d 	= 0. Let s ∈ C such that �s + γ 	= −d. Then

ˆ
y

�s+γ
d (log y)μ dy =

μ∑
i=0

cμ,i (log y)i y
�s+γ+d

d

(�s + γ + d)μ+1−i
, (5.2)

where cμ,i = (−1)μ−i μ!
i! d

μ+1−i.

5.1. Cells with bounded y-fibres

Recall that B is as in (3.2) and suppose that b < +∞. Let T ∈ D (B) be a prepared 
generator (as in (4.8)) without poles outside some closed discrete set P ⊆ K. We study 
the integrability of T on B: since B has bounded y-fibres, the function y �−→ T (s, x, y)
extends to a continuous function on the boundary of Bx, hence the integral

b(x)ˆ

a(x)

T (s, x, y) dy

is finite. Let us compute it.
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Let

P ′ :=
{
P ∪ {s : �s + η ∈ Z} if � 	= 0,
P if � = 0.

There are several cases to consider.
• If � 	= 0, then, for (s, x) ∈ (C \ P ′) × X, we deduce from Lemma 5.1 and normal 

convergence that

b(x)ˆ

a(x)

T (s, x, y) dy (5.3)

=
μ∑

i=0

∑
m,n

cμ,iG0 (s, x) ξm,n (s, x)
(�s + η + d−m + n)μ+1−i

(a (x))
m
d

(b (x))
n
d

·
[
y

�s+η+d−m+n
d (log y)i

]b(x)

a(x)

=
μ∑

i=0
cμ,iG0 (s, x) (b (x))

�s+η+d
d (log b (x))i

∑
m,n

ξm,n (s, x)
(

a(x)
b(x)

)m
d

(�s + η + d−m + n)μ+1−i

−
μ∑

i=0
cμ,iG0 (s, x) (a (x))

�s+η+d
d (log a (x))i

∑
m,n

ξm,n (s, x)
(

a(x)
b(x)

)n
d

(�s + η + d−m + n)μ+1−i

As a consequence of the Dominated Convergence Theorem, the fact that ∀x ∈ X, 1 ≤
a (x) < b (x) < +∞ and the results in Section 3.2, the expressions

∑
m,n

ξm,n (s, x)
(

a(x)
b(x)

)m
d

(�s + η + d−m + n)μ+1−i
,

∑
m,n

ξm,n (s, x)
(

a(x)
b(x)

)n
d

(�s + η + d−m + n)μ+1−i

define functions in A (X) without poles outside P ′.
• If � = 0 and η /∈ Z, then the above equation holds for all (s, x) ∈ (C \ P )×X, since 

the denominator does not vanish.
• If � = 0 and η ∈ Z, then we split Φ into the sum of two (still strongly convergent) 

series, by isolating the indices which contribute, in T , to the power y−1:

Φ (s, x, y) = Φ= (s, x, y) + Φ�= (s, x, y)

=
∑
m,n:

m=η+d+n

ξm,n (s, x)
(
a (x)
y

)m
d
(

y

b (x)

)n
d

+
∑
m,n:

m�=η+d+n

ξm,n (s, x)
(
a (x)
y

)m
d
(

y

b (x)

)n
d

=y−
η+d
d (a (x))

η+d
d

∑
ξn+η+d,n (s, x)

(
a (x)
b (x)

)n
d

n
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+
∑
m,n:

m�=η+d+n

ξm,n (s, x)
(
a (x)
y

)m
d
(

y

b (x)

)n
d

.

The integral of T �= (s, x, y) := G0 (s, x) y η
d (log y)μ Φ�= (s, x, y) is computed as in the 

previous cases, and the denominators never vanish.
As for T= (s, x, y) := G0 (s, x) y η

d (log y)μ Φ= (s, x, y), for (s, x) ∈ (C \ P )×X, we have

b(x)ˆ

a(x)

T= (s, x, y) dy = G0 (s, x) (a (x))
η+d
d

∑
n

ξn+η+d,n (s, x)
(
a (x)
b (x)

)n
d (log b (x))μ+1

μ + 1

−G0 (s, x) (a (x))
η+d
d

∑
n

ξn+η+d,n (s, x)
(
a (x)
b (x)

)n
d (log a (x))μ+1

μ + 1 .

Hence we have shown that there is H ∈ D (X) without poles outside some closed 
discrete set P ′ ⊇ P , such that

∀ (s, x) ∈ (C \ P ′) ×X, H (s, x) =
b(x)ˆ

a(x)

T (s, x, y) dy.

Remark 5.2. If � = 0 then H has no new singularities. If � 	= 0, let σ ∈ P ′\P . Since for all 
(x, y) ∈ B, the function s �−→ T (s, x, y) is holomorphic and bounded in a neighbourhood 
of σ, by differentiation under the integral sign, the integral 

´ b(x)
a(x) T (s, x, y) dy is also 

holomorphic in a neighbourhood of σ. Since such an integral coincides with H on a 
deleted neighbourhood of σ and s �−→ H (s, x) is meromorphic, σ is not a pole of H but 
a removable singularity. Hence,

Hσ (x) := lim
s−→σ

H (s, x) = lim
s−→σ

b(x)ˆ

a(x)

T (s, x, y) dy

=
b(x)ˆ

a(x)

lim
s−→σ

T (s, x, y) dy =
b(x)ˆ

a(x)

T (σ, x, y) dy.

The rightmost integral can be computed in a similar way as we did above for the case 
� = 0, η ∈ Z (where now we split the series according to the condition m = �σ+η+d +n) 
and the computation clearly shows that Hσ ∈ CK (X).

Finally, notice that every σ ∈ P ′ \ P has the form σ = ν0−η−d
� for some ν0 ∈ Z, so 

that if � and/or η are in K, then so is σ.

Hence, we have proven the following statement.
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Proposition 5.3. Let B be as in (3.2) with b < +∞, K ⊆ C be a subfield and let D be 
either CK,M or CP(K),M. Let T ∈ D (B) be a prepared generator with no poles outside P
(for some discrete closed set P ⊆ K), as in Definition 4.6. Let

P ′ = P ∪ {s ∈ C : �s + η ∈ Z} ⊆ K.

Then

Int (T ; (C \ P ) ×X) = (C \ P ) ×X

and there exists a function H ∈ D (X) without poles outside P ′ such that

∀ (s, x) ∈ (C \ P ′) ×X, H (s, x) =
b(x)ˆ

a(x)

T (s, x, y) dy.

Moreover, for all σ ∈ P ′ \ P there is a function Hσ ∈ CK (X) such that

∀x ∈ X, Hσ (x) =
b(x)ˆ

a(x)

T (σ, x, y) dy

and ∀x ∈ X, the function s �−→ H (s, x) can be holomorphically extended at s = σ by 
setting H (σ, x) = Hσ (x).

Remark 5.4. The proposition also applies to any finite sum of prepared generators on the 
bounded cell B, with P ′ a finite union of closed and discrete sets and P ′ \ P contained 
in a finitely generated Z-lattice.

5.2. Cells with unbounded y-fibres

We now introduce a type of function in D (X ×R) which has a particularly simple 
expression in the last variable y.

Definition 5.5. Let A ⊆ X × R be a subanalytic cell which is open over X (see Def-
inition 3.1). A function h ∈ D (A) without poles outside some closed discrete set 
P ⊆ K is Puiseux in y if there are �, η ∈ K, d ∈ N \ {0} , μ ∈ N and a collection 
{gk (s, x)}k∈N ⊆ D (X) such that for all s ∈ C \ P , the series of functions

ϕ (s, x, y) :=
∑
k

gk (s, x) y− k
d

converges normally on A and ∀ (x, y) ∈ A, C \ P � s �−→ ϕ (s, x, y) is holomorphic, and
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h (s, x, y) = ϕ (s, x, y) y
�s+η

d (log y)μ =
∑
k

gk (s, x) y
�s+η−k

d (log y)μ . (5.4)

We call the tuple (�, η, d, μ) the Puiseux data of h.

Remark 5.6. Let B be as in (3.2) and T ∈ D (B) be a prepared generator (for some 
y-prepared 1-bounded subanalytic map ψ as in (3.3)). If B has unbounded y-fibres, then 
T is Puiseux in y.

We now turn our attention to prepared generators of D (B), where, in the definition 
(3.2) of B, we have b ≡ +∞. More generally, in what follows we will suppose that 
T ∈ D (B) is a finite sum of prepared generators (where ψ is as in (4.6)), sharing the 
same Puiseux data and without poles outside some closed discrete set P ⊆ K. Hence, 
for some �, η ∈ K, μ ∈ N, T has the form

T (s, x, y) =
∑
j≤N

Tj (s, x, y)

=
∑
j≤N

Gj (s, x) y
�s+η

d (log y)μ
∑
k

ξj,k (s, x)
(
a (x)
y

) k
d

= y
�s+η

d (log y)μ
∑
k

hk (s, x)
(
a (x)
y

) k
d

,

(5.5)

where hk =
∑

j≤N Gjξj,k ∈ D (X).
First, we describe Int (T ; (C \ P ) ×X). Let mk (s, y) = y

�s+η−k
d (log y)μ and notice 

that, since a (x) ≥ 1 and since for all s ∈ C the real parts of the exponent of y in mk

and mk′ are different if k 	= k′,

Int (T ; (C \ P ) ×X) =
⋂
k∈N

Int (hkmk; (C \ P ) ×X) .

• If � 	= 0 then

Int (hkmk; (C \ P ) ×X) = {s ∈ C \ P : � (�s + η) + d− k < 0} ×X

∪ {(s, x) ∈ (C \ P ) ×X : �(�s + η) + d− k ≥ 0 ∧ hk (s, x) = 0}

and hence, if

S0 = {s ∈ C : � (�s + η) + d < 0} and Si = {s ∈ C : i− 1 ≤ � (�s + η) + d < i} (i ≥ 1) ,
(5.6)

then
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Int (T ; (C \ P ) ×X) = (S0 ×X) ∪
⋃
i≥1

{
(s, x) ∈ (Si \ P ) ×X :

∧
k<i

hk (s, x) = 0
}
.

(5.7)
• If � = 0 then

Int (hkmk; (C \ P ) ×X) =
{
(C \ P ) ×X if � (η) + d− k < 0
{(s, x) ∈ (C \ P ) ×X : hk (s, x) = 0} if � (η) + d− k ≥ 0

and hence, if k0 = �� (η)� + d, then

Int (T ; (C \ P ) ×X) =

⎧⎨
⎩(s, x) ∈ (C \ P ) ×X :

∧
k≤k0

hk (s, x) = 0

⎫⎬
⎭ . (5.8)

Let

P ′ =
{
P ∪ {s ∈ C : � (�s + η) + d ∈ N} if � 	= 0
P if � = 0

⊆ K. (5.9)

Notice that (P ′ \ P ) ∩ S0 = ∅.
Our next aim is to show that there exists H ∈ D (X), with no poles outside P ′ such 

that H coincides with the integral of T on its integration locus.
In the notation of Lemma 5.1, let

Hk (s, x) = − (a (x))
�s+η+d

d

∑
i≤μ

cμ,i (log a (x))i hk (s, x)
(�s + η + d− k)μ+1−i

,

and define

H (s, x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑
k≥0

Hk (s, x) if � 	= 0

∑
k>k0

Hk (s, x) if � = 0
.

By the results in Section 3.2, H ∈ D (X) and has no poles outside P ′, and by Lemma 5.1,

∀ (s, x) ∈ Int (T ; (C \ P ′) ×X) ,
+∞ˆ

a(x)

T (s, x, y) dy = H (s, x) .

If � = 0 then H has no new singularities, whereas if � 	= 0 then the new singularities are 
located in (C \ S0) ×X and are in general not removable.
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Remark 5.7. If D = CK,M then the sets Si (i ≥ 1) in (5.6) are vertical strips in the 
complex plane of fixed width 1

� . The points σ ∈ P ′ \ P lie on the boundaries of such 

strips and their imaginary part is equal to 
� (η)
�

. If D = CP(K),M, where K 	⊆ R, then 

� ∈ K and the sets Si are parallel (not necessarily vertical) strips of fixed width. The 
points σ ∈ P ′ \ P again lie on the boundaries of such strips and satisfy the equation 
� (�)� (σ)+� (�)� (σ)+� (η) = 0. In both cases, the set P ′ \P is contained in a finitely 
generated Z-lattice and hence P ′ is closed and discrete.

Hence, we have proven the following result.

Proposition 5.8. Let B be as in (3.2) with b = +∞, K ⊆ C be a subfield and let D be 
either CK,M or CP(K),M. Let T ∈ D (B) be a finite sum of prepared generators sharing 
the same Puiseux data, as in (5.5), with no poles outside P (for some discrete closed 
set P ⊆ K). Then Int (T ; (C \ P ) ×X) is described as in (5.7) (if � 	= 0) or in (5.8) (if 
� = 0) and, for P ′ as in (5.9), there exists a function H ∈ D (X) without poles outside 
P ′ such that

∀ (s, x) ∈ Int (T ; (C \ P ) ×X) , H (s, x) =
+∞ˆ

a(x)

T (s, x, y) dy.

6. Stability under integration of (parametric) power-constructible functions

This section is devoted to the proof of the results of stability under parametric inte-
gration in Section 2.

For the rest of this section we let D be either CK,M or CP(K),M.
We will first prove stability under integration when we integrate with respect to a 

single variable y. In this case, we can also give a description of the integration locus. 
The strategy is the following: we prepare the function we want to integrate with respect 
to the variable y. This produces a cell decomposition such that on each cell, in the 
new coordinates the function is a sum of prepared generators. If the cell has bounded 
y-fibres, then the function is integrable everywhere in restriction to such a cell, and we 
have already shown (see Remark 5.4) that the integral can be expressed as a function 
of D. If the cell has unbounded y-fibres and the prepared generators all share the same 
Puiseux data, then we know how to conclude by the results of the previous section. It 
remains to consider the case of a sum of generators who have different Puiseux data. Such 
data induce a partition of C into areas (see (5.6)) which are involved in the description 
of the integrability locus. In order to deal with different Puiseux data, we introduce the 
notion of non-accumulating grid.

Definition 6.1. Given N, d ∈ N× and {(�i, ηi) : 0 ≤ i ≤ N} ⊆ K2, define

Ξi,0,− = ∅,
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Ξi,0,◦ = {s ∈ C : � (�is + ηi) + d < 0} (i ≤ N) ,

Ξi,j,− = {s ∈ C : � (�is + ηi) + d = j − 1}
(
i ≤ N, j ∈ N×) ,

Ξi,j,◦ = {s ∈ C : j − 1 < � (�is + ηi) + d < j}
(
i ≤ N, j ∈ N×) .

A collection of sets (partitioning C) of the form

G = {Ξi,j, : i ≤ N, j ∈ N, � ∈ {−, ◦}}

is called a non-accumulating grid of data {N, d, (�0, η0) , . . . , (�N , ηN )}. Note that if �i = 0
then ∀j ∈ N, ∀� ∈ {−, ◦} , Ξi,j, is either empty or the whole C.

A G-cell is a nonempty subset Σ ⊆ C such that

∀Ξ ∈ G, Ξ ∩ Σ = ∅ or Σ ⊆ Ξ, and Σ =
⋂

{Ξ ∈ G : Σ ⊆ Ξ} .

We let R (G) be the collection of all G-cells. The G-cells are convex and form a partition 
of C. Each G-cell either has empty interior (an isolated point, a segment or a line) or is an 
open subset of C containing an open ball of radius ε, for some ε = ε (G) > 0 depending 
only on G (hence the word “non-accumulating”). Given a G-cell Σ, there are functions 
jΣ : {0, . . . , N} −→ N and �Σ : {0, . . . , N} −→ {−, ◦} such that Σ =

⋂
i≤N Ξi,jΣ(i),Σ(i).

If all the �i are in R×, then we say that G is a vertical non-accumulating grid. In 
this case, the cells with empty interior are points or vertical lines, and the open cells are 
vertical strips of width ≥ ε, for some ε = ε (G) > 0.

Example 6.2. Let N, d ∈ N×. For i ≤ N , let Ti be a sum of prepared generators on an 
unbounded cell, sharing the same Puiseux data (�i, ηi, d, μi) (as in (5.5), see Remark 5.6), 
without poles outside some closed discrete set P ⊆ K. Consider the non-accumulating 
grid of data {N, d, (�0, η0) , . . . , (�N , ηN )} and let Σ =

⋂
i≤N Ξi,jΣ(i),Σ(i) ∈ R (G) be a 

G-cell. Then

Int (Ti; (Σ \ P ) ×X) =

⎧⎨
⎩(s, x) : s ∈ Σ \ P,

∧
k<jΣ(i)

gi,k (s, x) = 0

⎫⎬
⎭ ,

where gi,k ∈ D (X) are the coefficients in the series expansion (5.4) of Ti. It follows that, 
if we rename

{
gΣ
k : k ∈ JΣ

}
= {gi,k : i ≤ N, k < jΣ (i)} ,

then

⋂
Int (Ti; (Σ \ P ) ×X) =

{
(s, x) : s ∈ Σ \ P,

∧
gΣ
k (s, x) = 0

}
.

i≤N k∈JΣ
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Theorem 6.3. Let K ⊆ C be a subfield and let D be either CK,M or CP(K),M. Let P ⊆ K

be a closed discrete set and h ∈ D (X ×R) be with no poles outside P . There exist a 
closed discrete set P ′ ⊆ K, containing P and contained in a finitely generated Z-lattice, 
and a function H ∈ D (X) without poles outside P ′ such that

∀ (s, x) ∈ Int (h; (C \ P ′) ×X) ,
ˆ

R

h (s, x, y) dy = H (s, x) .

Moreover, there exists a non-accumulating grid G as in Definition 6.1 such that

Int (h; (C \ P ′) ×X) =
⋃

Σ∈P(G)

{
(s, x) : s ∈ Σ \ P ′,

∧
k∈JΣ

gΣ
k (s, x) = 0

}
, (6.1)

for a suitable finite set JΣ and suitable gΣ
k ∈ D (X) without poles outside P .

Proof. Apply Proposition 4.7 to h to find a cell decomposition of Rm+1 such that on each 
cell BA as in (3.5), h ◦ΠA is a finite sum of prepared generators (for some y-prepared 1-
bounded subanalytic map ψA). We may suppose that X itself is a cell and we concentrate 
on the collection X of all the cells of the decomposition which have X as a base, and 
which are open over Rm. Since Int (h; (C \ P ) ×X) =

⋂
A∈X Int (h · χA; (C \ P ) ×X)

and

∀ (s, x) ∈ Int (h; (C \ P ) ×X) ,
ˆ

R

h (s, x, y) dy =
∑
A∈X

ˆ

R

h (s, x, y) · χA (x, y) dy,

it is enough to prove the theorem for the functions h · χA.
For A ∈ X , we can write

h ◦ ΠA (s, x, y) =
∑

i≤MA

T̃A
i (s, x, y) ,

where each T̃A
i ∈ D (BA) is a prepared generator. Recall the notation in (3.4) and note 

that

∂ΠA

∂y
(x, y) = σAτAy

τA−1.

Define

TA
i (s, x, y) := σAτAy

τA−1T̃A
i (s, x, y) .

Then,

Int
(
T̃A
i ◦ Π−1

A ; (C \ P ) ×X
)

= Int
(
TA
i ; (C \ P ) ×X

)
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and ∀ (s, x) ∈ Int (h · χA; (C \ P ) ×X),

ˆ

R

h (s, x, y) · χA (x, y) dy =
bA(x)ˆ

aA(x)

h ◦ ΠA (s, x, y) · ∂ΠA

∂y
(x, y) dy

=
bA(x)ˆ

aA(x)

∑
i≤MA

TA
i (s, x, y) dy.

If BA has bounded y-fibres, then by Proposition 5.3 and Remark 5.4,

Int
(
TA
i ; (C \ P ) ×X

)
= (C \ P ) ×X

and there are a closed discrete set P ′
A ⊆ K (containing P and contained in a finitely 

generated Z-lattice) and functions HA
i ∈ D (X) without poles outside P ′

A, such that

∀ (s, x) ∈ (C \ P ′
A) ×X,

∑
i≤MA

HA
i (s, x) =

ˆ

R

h (s, x, y) · χA (s, x) dy.

If BA has unbounded y-fibres, then consider the prepared generators T̃A
i (which are 

Puiseux in y, of Puiseux data (�′i, η′i, d, μ′
i)). Suppose that there are i 	= j ≤ MA such 

that �′i = �′j , μ
′
i = μ′

j and η′i − η′j = ν ∈ N. Write

T̃A
j (s, x, y) =

∑
k

g̃j,k (s, x) y
�′js+η′

j−k

d (log y)μ
′
j

=
∑
k

hj,k (s, x) y
�′is+η′

i−k

d (log y)μ
′
i ,

where

hj,k (s, x) =
{

0 if k < ν

g̃j,k−ν if k ≥ ν
.

Now T̃A
i and T̃A

j share the same Puiseux data (and so do TA
i ans TA

j ). Hence, by summing 
together all generators which share the same Puiseux data, we may write

∑
i≤MA

T̃A
i (s, x, y) =

∑
i≤NA

T̃i (s, x, y) ,

where NA ∈ N and, if Ti = σAτAy
τA−1T̃i,

Ti (s, x, y) =
∑

gi,k (s, x) y
�is+ηi−k

d (log y)μi ∈ D (BA) (6.2)

k
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is a finite sum of prepared generators on the unbounded cell BA sharing the same Puiseux 
data (�i, ηi, d, μi). Moreover, ∀i 	= j ≤ NA, (�i, ηi, μi) 	= (�j , ηj , μj) and if (�i, μi) =
(�j , μj) then ηi − ηj /∈ Z. Let

P ′
A = P ∪ {s ∈ C : ∃i ≤ NA s.t. �i 	= 0 and �is + ηi + d ∈ N} .

Apply Proposition 5.8 to each Ti and find Hi ∈ D (X) without poles outside P ′
A such 

that

∀ (s, x) ∈ Int (Ti; (C \ P ′
A) ×X) , Hi (s, x) =

+∞ˆ

aA(x)

Ti (s, x, y) dy.

Clearly, 
⋂

i≤NA
Int (Ti; (C \ P ) ×X) ⊆ Int (h · χA; (C \ P ) ×X) and

∀ (s, x) ∈
⋂
i

Int (Ti; (C \ P ′
A) ×X) ,

ˆ

R

h (s, x, y) · χA (x, y) dy = H0 + · · · + HN .

Recall that the description of the above integrability locus is given in Example 6.2, with 
respect to the non-accumulating grid GA of data {NA, d, (�0, η0) , . . . , (�NA

, ηNA
)}. We 

would hence be done if we could show that the integrability locus of h · χA coincided 
with the intersection of the integrability loci of the Ti. This is the case, outside a closed 
discrete set, as we now show.

Let

P ′′
A = {s ∈ C : ∃i 	= j ≤ NA s.t. μi = μj , �i 	= �j and (�i − �j) s + (ηi − ηj) ∈ Z}

(6.3)

and notice that P ′′
A ⊆ K is contained in a finitely generated Z-lattice. Note that ∀s ∈

C \ P ′′
A, the tuples

(
�is + ηi − k

d
, μi

)
1 ≤ i ≤ NA, k ∈ N

are pairwise distinct.
We now show that Int (h · χA; (C \ P ′′

A) ×X) =
⋂

i Int (Ti; (C \ P ′′
A) ×X).

Let Σ =
⋂

i≤N Ξi,jΣ(i),Σ(i) be a GA-cell, in the notation of Example 6.2, and let 
(s0, x0) ∈ Int (h · χA; (Σ \ P ′′

A) ×X). For all (s, x, y) ∈ (Σ \ P ′′
A) ×BA, write

NA∑
i=1

Ti (s, x, y) =

⎛
⎝NA∑

i=1

jΣ(i)−1∑
k=0

gi,k (s, x) y
�is+ηi−k

d (log y)μi

⎞
⎠

+

⎛
⎝NA∑

i=1

∑
gi,k (s, x) y

�is+ηi−k
d (log y)μi

⎞
⎠

k≥jΣ(i)
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= hΣ
A,1 (s, x, y) + hΣ

A,2 (s, x, y)

and notice that Int
(
hΣ
A,2; Σ ×X

)
= Σ × X, so (s0, x0) ∈ Int

(
hΣ
A,1; (Σ \ P ′′

A) ×X
)
. Re-

name the (finitely many) terms appearing in the double sum defining hΣ
A,1 as

{
gΣ
j (s, x) yαjs+βj (log y)νj

}
j∈JΣ

and let

aj = � (αjs0 + βj) , bj = � (αjs0 + βj) .

Recall that (aj , bj) 	= (aj′ , bj′) whenever νj = νj′ , since s0 /∈ P ′′
A. Let (a0, ν0) be the 

lexicographic maximum of the set {(aj , νj) : j ∈ JΣ} and let J0 = {j ∈ JΣ : (aj , νj) =
(a0, ν0)}. Write

hΣ
A,1 (s0, x0, y) = ya0 (log y)ν0

∑
j∈J0

gΣ
j (s0, x0) yibj +

∑
j∈JΣ\J0

gΣ
j (s0, x0) yaj+ibj (log y)νj .

Since (s0, x0) ∈ Int
(
hΣ
A,1; (Σ \ P ′′

A) ×X
)
, it follows from Proposition 3.4 (in the case 

where all the polynomials pj are identically zero) that 
∧

j∈J0
gΣ
j (s0, x0) = 0. By repeating 

this procedure with the index set JΣ \ J0, we end up obtaining that

∧
j∈JΣ

gΣ
j (s0, x0) = 0,

i.e. (s0, x0) ∈
⋂

i≤NA
Int (Ti; (Σ \ P ′′

A) ×X).
Summing up, if we define P ′′=

⋃
{P ′′

A :BA unbounded}, G :=
⋃
{GA :BA unbounded}

and P ′ :=
⋃

A∈X P ′
A ∪ P ′′, then the proof of the theorem is complete. �

Remark 6.4. In the previous proof, if σ ∈ P ′′
A, then we rewrite the functions Ti (σ, x, y)

by regrouping the terms with the same exponents. We obtain thus new functions Ti,σ ∈
CC (X ×R) (seen as functions in CM (X ×R) which happen not to depend on s) to 
which Proposition 5.8 applies and such that, if hσ (x, y) = h (σ, x, y) · χA (x, y), then

Int (hσ;X) =
⋂
i

Int (Ti,σ;X) .

Moreover, if σ ∈ P ′′
A \ P ′

A then σ is not a singularity of either of the Hi and, since the 
computation of the integral is done integrating term-by-term, it is still the case that

ˆ
h (σ, x, y) · χA (x, y) dy = H0 (σ, x) + · · · + HN (σ, x) .
R
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Remark 6.5. The non-accumulating grid G in Theorem 6.3 is vertical in all but the 
case D = CP(K),M, with K 	⊆ R. This implies in particular that the system CP(C),M

is strictly larger that the system CM: for example, if h ∈ CP(C),M (X ×R) is a finite 
sum of generators which are Puiseux in y on some cell A with unbounded y-fibres (see 
Definition 5.5), where the real and imaginary parts of the exponents � appearing in 
the Puiseux data are all nonzero, then the integration locus of h in (6.1) is based on a 
non-accumulating grid which is not vertical. Hence h cannot be an element of CM.

We now conclude the proof of Theorem 2.19, using Fubini’s Theorem.

Proof. We argue by induction on n ∈ N×. If n = 1 then it is Theorem 6.3. We prove 
the case n + 1: let y be an n-tuple of variables and let z be a single variable, and 
consider h ∈ D

(
X ×Rn+1) without poles outside some closed discrete set P . By Fubini’s 

Theorem, for all (s, x) ∈ Int (h; (C \ P ) ×X), the set

E(s,x) := {y ∈ Rn : (s, x, y) ∈ Int (h; (C \ P ) ×X ×Rn)}

is such that Rn \ E(s,x) has measure zero and

¨

Rn+1

h (s, x, y, z) dy ∧ dz =
ˆ

E(s,x)

⎡
⎣ˆ

R

h (s, x, y, z) dz

⎤
⎦ dy.

By Theorem 6.3, applied to h as an element of D ((X ×Rn) ×R), there exist a set 
P1 ⊆ K (containing P and contained in a finitely generated Z-lattice) and a function 
H1 ∈ D (X ×Rn) without poles outside P1 such that

∀ (s, x, y) ∈ Int (h; (C \ P1) ×X ×Rn) , H1 (s, x, y) =
ˆ

R

h (s, x, y, z) dz.

We now apply the inductive hypothesis to H1 and find that there exist P ′ ⊆ K (con-
taining P1 and contained in a finitely generated Z-lattice) and a function H ∈ D (X)
without poles outside P ′ such that

∀ (s, x) ∈ Int (H1; (C \ P ′) ×X) , H (s, x) =
ˆ

Rn

H1 (s, x, y) dy.

Let (s, x) ∈ Int (h; (C \ P ′) ×X). Since H1 is defined on the whole (C \ P ′) ×X × Rn

and Rn \ E(s,x) has measure zero,

¨
h (s, x, y, z) dy ∧ dz =

ˆ
H1 (s, x, y) dy.
Rn+1 Rn
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In particular, (s, x) ∈ Int (H1; (C \ P ′) ×X) and
¨

Rn+1

h (s, x, y, z) dy ∧ dz = H (s, x) . �

Remark 6.6. The proof of Theorem 2.4 is obtained as a special case of that of Theo-
rem 2.19, where all the functions involved happen not to depend on the variable s.

We conclude this section with some further remarks about the classes CK, CK,M,

CP(K),M considered here. Again, we let D be either CK,M or CP(K),M.

Remarks 6.7.

(1) Let Σ ⊆ C be open and define DΣ (X) := {h � Σ ×X : h ∈ D (X)}. Clearly, Theo-
rem 2.19 also holds for DΣ.

(2) D is stable under right-composition with meromorphic functions, in the following 
sense. Let ξ ∈ EK and Σ, Σ′ ⊆ C open such that ξ (Σ) = Σ′. If h ∈ DΣ′ (X) then 
(s, x) �−→ h (ξ (s) , x) ∈ DΣ (X).

(3) D and CK are stable under right-composition with subanalytic maps, in the following 
sense. Let X ⊆ Rm, Y ⊆ Rn be subanalytic and ϕ : X −→ Y be a map with 
components in S (X). If h ∈ D (Y ) and g ∈ CK (Y ) then (s, x) �−→ h (s, ϕ (x)) ∈
D (X) and g ◦ ϕ ∈ CK (X).

Finally, for h ∈ D (X ×R) without poles outside some closed discrete set P ⊆ K, we 
describe (uniformly in the parameters (s, x)) the behaviour of h when y −→ +∞. For 
this, we apply Proposition 4.7 to prepare h and we concentrate on the unique cell A
(with base X) which has vertical unbounded fibres. By Remark 3.10, ΠA is the identity 
and A = BA = {(x, y) : x ∈ X, y > a (x)}.

Arguing as in the proof of Theorem 6.3 (the case of a cell with unbounded y-fibres) 
we can write, ∀ (s, x, y) ∈ (C \ P ) ×A,

h (s, x, y) =
∑
i≤N

Ti (s, x, y) ,

where each Ti is Puiseux in y, as in (6.2). Moreover, by enlarging P to contain the 
“collision set” defined in (6.3), we may suppose that ∀s ∈ C \ P , the tuples

(
�is + ηi − k

d
, μi

)
i ≤ N, k ∈ N (6.4)

are pairwise distinct. Recall that �i, ηi ∈ K and d, μi ∈ N.
Fix an enumeration N � j �−→ (i (j) , k (j)) ∈ {0, . . . , N}×N, so that we may rewrite 

(6.4) as
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(λj (s) , νj) =
(
�i(j)s + ηi(j) − k (j)

d
, μi(j)

)
.

Define

aj (s) = � (λj (s)) =
�
(
�i(j)s + ηi(j)

)
− k (j)

d
, bj (s) = � (λj (s)) =

�
(
�i(j)s + ηi(j)

)
d

.

Notice that bj (s) takes at most N + 1 different values, for every fixed s. Hence, we may 
write h as the sum of a uniformly summable family of functions as follows:

h (s, x, y) =
∑
j

hj (s, x) yaj(s)+ibj(s) (log y)νj , (6.5)

where hj ∈ D (X).
In a forthcoming paper, we will use (6.5) to show that CK is stable under taking 

pointwise limits and that neither of the classes CK, CK,M, CP(K),M contains the Fourier 
transforms of all subanalytic functions.
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